Learning outcome
1.1

1.1 Comprehensive, theory based understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the engineering discipline.

1.2

1.2 Conceptual understanding of the, mathematics, numerical analysis, statistics, and computer and information sciences which underpin the engineering discipline.

1.3

1.3 In-depth understanding of specialist bodies of knowledge within the engineering discipline.

1.4

1.4 Discernment of knowledge development and research directions within the engineering discipline.

1.5

1.5 Knowledge of contextual factors impacting the engineering discipline.

1.6

1.6 Understanding of the scope, principles, norms, accountabilities and bounds of contemporary engineering practice in the specific discipline.

2.1

2.1 Application of established engineering methods to complex engineering problem solving.

2.2

2.2 Fluent application of engineering techniques, tools and resources.

2.3

2.3 Application of systematic engineering synthesis and design processes.

2.4

2.4 Application of systematic approaches to the conduct and management of engineering projects.

3.1

3.1 Ethical conduct and professional accountability.

3.2

3.2 Effective oral and written communication in professional and lay domains.

3.3

3.3 Creative, innovative and pro-active demeanour.

3.4

3.4 Professional use and management of information.

3.5

3.5 Orderly management of self, and professional conduct.

3.6

3.6 Effective team membership and team leadership.

A1

<p>Apply advanced analytical and numerical techniques to solve fluid dynamics problems related to industrial applications.</p>

A2

<p>Apply advanced fluid dynamics principles and interpret results gained in a controlled laboratory environment.</p>

K1

<p>Discern and identify advanced fluid dynamics concepts in industrial applications.</p>

K2

<p>Interpret and relate appropriate analytical and numerical problem-solving methods to industrial applications involving advanced fluid dynamics concepts.</p>

S1

<p>Translate theoretical knowledge into a controlled laboratory environment.</p>

S2

<p>Utilise a range of analytical and numerical methods to explicit and implicit advanced fluid dynamics problems.</p>

S3

<p>Distinguish between different solution techniques and methodologies.</p>