Attribute | Assessed | Level |
1 Knowledge and Skill Base |
| 1.1 Comprehensive, theory based understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the engineering discipline. |
| | 1.1.1 Engages with the engineering discipline at a phenomenological level, applying sciences and engineering fundamentals to systematic investigation, interpretation, analysis and innovative solution of complex problems and broader aspects of engineering practice. | | Yes | Introductory |
| 1.2 Conceptual understanding of the, mathematics, numerical analysis, statistics, and computer and information sciences which underpin the engineering discipline. |
| | 1.2.1 Develops and fluently applies relevant investigation analysis, interpretation, assessment, characterisation, prediction, evaluation, modelling, decision making, measurement, knowledge management and communication tools and techniques pertinent to the engineering discipline. | | Yes | Introductory |
| 1.3 In-depth understanding of specialist bodies of knowledge within the engineering discipline. |
| | 1.3.1 Proficiently applies advanced technical knowledge and skills in at least one specialist practice domain of the engineering discipline. | | Yes | Introductory |
| 1.5 Knowledge of contextual factors impacting the engineering discipline. |
| | 1.5.1 Identifies and understands the interactions between engineering systems and people in the social, cultural, environmental, commercial, legal and political contexts in which they operate, including both the positive role of engineering in sustainable development and the potentially adverse impacts of engineering activity in the engineering discipline. | | Yes | Introductory |
| 1.6 Understanding of the scope, principles, norms, accountabilities and bounds of contemporary engineering practice in the specific discipline. |
| | 1.6.1 Applies systematic principles of engineering design relevant to the engineering discipline. | | Yes | Introductory |
| | 1.6.2 Appreciates the basis and relevance of standards and codes of practice, as well as legislative and statutory requirements applicable to the engineering discipline. | | Yes | Introductory |
| | 1.6.3 Appreciates the principles of safety engineering, risk management and the health and safety responsibilities of the professional engineer, including legislative requirements applicable to the engineering discipline. | | Yes | Introductory |
2 Engineering Application Ability |
| 2.2 Fluent application of engineering techniques, tools and resources. |
| | 2.2.1 Proficiently identifies, selects and applies the materials, components, devices, systems, processes, resources, plant and equipment relevant to the engineering discipline. | | Yes | Introductory |
| | 2.2.2 Constructs or selects and applies from a qualitative description of a phenomenon, process, system, component or device a mathematical, physical or computational model based on fundamental scientific principles and justifiable simplifying assumptions. | | Yes | Introductory |
| | 2.2.3 Determines properties, performance, safe working limits, failure modes, and other inherent parameters of materials, components and systems relevant to the engineering discipline. | | Yes | Introductory |
| | 2.2.6 Designs and conducts experiments, analyses and interprets result data and formulates reliable conclusions. | | Yes | Introductory |
| | 2.2.7 Analyses sources of error in applied models and experiments; eliminates, minimises or compensates for such errors; quantifies significance of errors to any conclusions drawn. | | Yes | Introductory |
3 Professional and Personal Attributes |
| 3.2 Effective oral and written communication in professional and lay domains. |
| | 3.2.1 Is proficient in listening, speaking, reading and writing English, including:
a) comprehending critically and fairly the viewpoints of others;
b) expressing information effectively and succinctly, issuing instruction, engaging in discussion, presenting arguments and justification, debating and negotiating to technical and non-technical audiences and using textual, diagrammatic, pictorial and graphical media best suited to the context;
c) representing an engineering position, or the engineering profession at large to the broader community;
d) appreciating the impact of body language, personal behaviour and other non-verbal communication processes, as well as the fundamentals of human social behaviour and their cross-cultural differences. | | Yes | Introductory |
| | 3.2.2 Prepares high quality engineering documents such as progress and project reports, reports of investigations and feasibility studies, proposals, specifications, design records, drawings, technical descriptions and presentations pertinent to the engineering discipline. | | Yes | Introductory |