Attribute | Assessed | Level |
1 Knowledge and Skill Base |
| 1.1 Comprehensive, theory based understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the engineering discipline. |
| | 1.1.1 Engages with the engineering discipline at a phenomenological level, applying sciences and engineering fundamentals to systematic investigation, interpretation, analysis and innovative solution of complex problems and broader aspects of engineering practice. | | Yes | Advanced |
| 1.2 Conceptual understanding of the, mathematics, numerical analysis, statistics, and computer and information sciences which underpin the engineering discipline. |
| | 1.2.1 Develops and fluently applies relevant investigation analysis, interpretation, assessment, characterisation, prediction, evaluation, modelling, decision making, measurement, knowledge management and communication tools and techniques pertinent to the engineering discipline. | | Yes | Advanced |
| 1.3 In-depth understanding of specialist bodies of knowledge within the engineering discipline. |
| | 1.3.1 Proficiently applies advanced technical knowledge and skills in at least one specialist practice domain of the engineering discipline. | | Yes | Advanced |
| 1.4 Discernment of knowledge development and research directions within the engineering discipline. |
| | 1.4.1 Identifies and critically appraises current developments, advanced technologies, emerging issues and interdisciplinary linkages in at least one specialist practice domain of the engineering discipline. | | Yes | Advanced |
| 1.5 Knowledge of contextual factors impacting the engineering discipline. |
| | 1.5.1 Identifies and understands the interactions between engineering systems and people in the social, cultural, environmental, commercial, legal and political contexts in which they operate, including both the positive role of engineering in sustainable development and the potentially adverse impacts of engineering activity in the engineering discipline. | | Yes | Advanced |
| | 1.5.3 Is aware of the fundamentals of business and enterprise management. | | Yes | Advanced |
| 1.6 Understanding of the scope, principles, norms, accountabilities and bounds of contemporary engineering practice in the specific discipline. |
| | 1.6.1 Applies systematic principles of engineering design relevant to the engineering discipline. | | Yes | Advanced |
| | 1.6.3 Appreciates the principles of safety engineering, risk management and the health and safety responsibilities of the professional engineer, including legislative requirements applicable to the engineering discipline. | | Yes | Advanced |
2 Engineering Application Ability |
| 2.1 Application of established engineering methods to complex engineering problem solving. |
| | 2.1.2 Ensures that all aspects of an engineering activity are soundly based on fundamental principles - by diagnosing, and taking appropriate action with data, calculations, results, proposals, processes, practices, and documented information that may be ill-founded, illogical, erroneous, unreliable or unrealistic. | | Yes | Advanced |
| 2.2 Fluent application of engineering techniques, tools and resources. |
| | 2.2.1 Proficiently identifies, selects and applies the materials, components, devices, systems, processes, resources, plant and equipment relevant to the engineering discipline. | | Yes | Advanced |
| 2.3 Application of systematic engineering synthesis and design processes. |
| | 2.3.3 Executes and leads a whole systems design cycle approach including tasks such as:
a) determining client requirements and identifying the impact of relevant contextual factors, including business planning and costing targets;
b) systematically addressing sustainability criteria;
c) working within projected development, production and implementation constraints;
d) eliciting, scoping and documenting the required outcomes of the design task and defining acceptance criteria;
e) identifying assessing and managing technical, health and safety risks integral to the design process;
f) writing engineering specifications, that fully satisfy the formal requirements;
g) ensuring compliance with essential engineering standards and codes of practice;
h) partitioning the design task into appropriate modular, functional elements; that can be separately addressed and subsequently integrated through defined interfaces;
i) identifying and analysing possible design approaches and justifying an optimal approach;
j) developing and completing the design using appropriate engineering principles, tools, and processes;
k) integrating functional elements to form a coherent design solution;
l) quantifying the materials, components, systems, equipment, facilities, engineering resources and operating arrangements needed for implementation of the solution;
m) checking the design solution for each element and the integrated system against the engineering specifications;
n) devising and documenting tests that will verify performance of the elements and the integrated realisation;
o) prototyping/implementing the design solution and verifying performance against specification;
p) documenting, commissioning and reporting the design outcome. | | Yes | Advanced |
| 2.4 Application of systematic approaches to the conduct and management of engineering projects. |
| | 2.4.2 Seeks out the requirements and associated resources and realistically assesses the scope, dimensions, scale of effort and indicative costs of a complex engineering project. | | Yes | Advanced |
3 Professional and Personal Attributes |
| 3.1 Ethical conduct and professional accountability. |
| | 3.1.1 Demonstrates commitment to uphold the Engineers Australia - Code of Ethics, and established norms of professional conduct pertinent to the engineering discipline. | | Yes | Advanced |
| 3.2 Effective oral and written communication in professional and lay domains. |
| | 3.2.1 Is proficient in listening, speaking, reading and writing English, including:
a) comprehending critically and fairly the viewpoints of others;
b) expressing information effectively and succinctly, issuing instruction, engaging in discussion, presenting arguments and justification, debating and negotiating to technical and non-technical audiences and using textual, diagrammatic, pictorial and graphical media best suited to the context;
c) representing an engineering position, or the engineering profession at large to the broader community;
d) appreciating the impact of body language, personal behaviour and other non-verbal communication processes, as well as the fundamentals of human social behaviour and their cross-cultural differences. | | Yes | Advanced |
| 3.3 Creative, innovative and pro-active demeanour. |
| | 3.3.1 Applies creative approaches to identify and develop alternative concepts, solutions and procedures, appropriately challenges engineering practices from technical and non-technical viewpoints; identifies new technological opportunities. | | Yes | Advanced |
| 3.4 Professional use and management of information. |
| | 3.4.1 Is proficient in locating and utilising information - including accessing, systematically searching, analysing, evaluating and referencing relevant published works and data; is proficient in the use of indexes, bibliographic databases and other search facilities.
| | Yes | Advanced |
| 3.5 Orderly management of self, and professional conduct. |
| | 3.5.5 Thinks critically and applies an appropriate balance of logic and intellectual criteria to analysis, judgment and decision making. | | Yes | Advanced |